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A c c u r a c y  of B o n d  D i s t a n c e s  in O b l i q u e  C o o r d i n a t e  S y s t e m s ~  
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If  a(x) is the s tandard deviation of an atomic coordinate, the standard deviation of position of tha t  
atom in the direction of the corresponding reciprocal axis is aa(x) cos aa*,  where aa*  is the angle 
between the direct and reciprocal axes. When this s tandard deviation is independent of direction, 
the statistical correlation coefficient of two coordinates of the atom is given by the cosine of the 
angle between the corresponding reciprocal axes. In the method of least squares, if the standard 
deviation of a coordinate is calculated with neglect of cross terms, it tends to be low by the factor 
cos aa*.  I t  is shown that  crystallographic independence does not imply statistical independence. 

In troduc t ion  

The distance 1 between two a toms in a crystal  is a 
funct ion of the  coordinates xl, y~, zl, x2, y~, z2 of the  
two a toms and the  dimensions a, b, c, a,/3, y of the  
uni t  cell. The var iance  of l is given by  an expression 
(Arley & B u c h ,  1950): 

[ al a(xl)]2 
~2(g) = L ~  J + " ' "  

+ 2-~-xx-~yla(xl)a(yl)r(xl, yl) + . . . (1) 

where there is a t e rm of the  first  k ind for each variable 
and  a t e rm of the  second kind for each pair  of variables.  
The factor  a(xl)a(yl)r(xl, yl) is the  covarianee of xl 
and  yl, and  r(xl, yl) is the  correlation coefficient. The 
correlation coefficient is zero if the  two variables are 
s tat is t ical ly  independent .  I t  has  one of the  ext reme 
values + 1 or - 1  if the  two variables are re lated by  
s y m m e t r y  (except in hexagonal  coordinates, where 
sometimes a coordinate is a funct ion of two other  
coordinates). Ordinar i ly  the  coordinates determined by  
X - r a y  diffraction, when expressed as fractions of the  
uni t  cell, are independent  of the cell dimensions. 
I t  is commonly assumed (though not  necessarily t rue,  
as shown below) t h a t  coordinates of two crystallo- 
graphical ly independent  a toms are s tat is t ical ly in- 
dependent .  I t  is well known tha t  in oblique coordinate 
systems two different coordinates of an a tom are not  
in general s tat is t ical ly independent  of each other. Their 
correlation is re la ted in a simple way  to the angles of 
the  reciprocal lattice, as shown below, when certain 
conditions are satisfied. 

Corre la t ion  due to inc l ina t ion  of axes  

In  the  following discussion it is assumed t h a t  no 
correlation occurs between coordinates of different 
a toms,  and no consideration is given to errors in the  
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unit-cell dimensions. The var iance of position of an  
a tom,  p2, is defined as the  sum of the  six te rms in (1) 
corresponding to the  three coordinates of t h a t  a tom 
and  the  three cross te rms between them.  The var iance  
defined in this way  is a function of the  direction of l, 
and it depends on the  coordinates of the  second a tom 
only to the  ex ten t  t h a t  they  define this direction and  
the reby  the  values of the  derivatives.  When  1 lies in 
the  direction of a*, the  derivat ives with respect to 
y and z vanish,  and  

p = a  cos a a * a ( x ) =  (r(x)/a* (2) 

where aa* represents  the  angle between the  direct  
and  reciprocal a axes. For  monoclinic crystals,  
cos a a * =  sin ft. When  p is independent  of the  direction 
of l, the  error is isotropic. Errors  are f requent ly  
found to be approx imate ly  isotropic when reasonably  
symmetr ica l  samples of three-dimensional  d a t a  are 
used. I f  p is isotropic and the  axes are orthogonal,  
i t  is readi ly  shown from (1), or by  a simple s y m m e t r y  
consideration, t h a t  the  covariance of two coordinates 
of the  same a tom is zero. The correlation for oblique 
axes can be derived by the  following method,  suggested 
by  Waser  (1958), again with isotropic p. 

Let  the  unit-cell axes be ai(i= 1, 2, 3) and the  re- 
ciprocal axes be b~. Let  the coordinates of an a tom be 
x~ in the coordinate system of a~, and X~ in a system 
of unit  or thogonal  axes e~. The coordinates in the  
two systems are related by a linear t rans format ion  

x~ = .~, t i jXj . (3) 
) 

The same t rans format ion  relates the reciprocal axes 
to the  uni t  vectors (International Tables for X-ray 
Crystallography, 1952) : 

bi = • ti~ej. (4) 
/ 

By the  definition of the  scalar product ,  

b~. b~ = __Y t~tj~ . (5) 
k 
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In the  orthogonal system, 

coy (X~, Xy) = ~yp~ (6) 

where coy means  var iance if i = j  and covariance 
otherwise, and  6~y is the  Kronecker  delta. By  the  rule 
for calculat ion of variances and  covariances of l inearly 
re la ted variables  (Arley & Buch, 1950) 

coy (x~, x~) = . ~  t~rntyn coy (X,n, Xn)  • (7) 
m n  

Subst i tu t ing  (6) in (7) one obtains 

coy (x~, x3") = p~.~t~.~tjm 
m 

= p2(b~" b¢) . 

F rom (8) and the definit ion of r, 

(8) 

r(xi ,  xy) : (b~. bl) [(b~- b~)(by- by)]-½ 

= cos ~* (9) 

where ~* is a reciprocal cell angle. More explicitly,  
in conventional  notat ion:  

r(y, z) = cos a* (9a) 

r(x,  z) = cos fl* (9b) 

r(x, y ) =  cos y* . (9c) 

This result  has also been derived by t r igonometry by  
requiring tha t  (1) give an isotropic p in the plane of 
two reciprocal axes (Templcton, ]958). 
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Fig. 1. Variance of position with and without correlation, 
as explained in the text. 

To i l lustrate the magni tude  of the effects of correla- 
tion, there is plot ted in Fig. 1 the angular  dependence 
of p for a monoclinic f l--120 °. The solid circle repre- 
sents the isotropic p corresponding to r--½. The curve 
shows the dependence of p for independent  coordinates, 
or no correlation. The lat ter  curve would be ap- 
propriate,  for example,  when x and z were obtained 
from independent  projections. Note tha t  the curves 
coincide in the directions of the reciprocal axes. The 

broken circle is drawn wi th  radius a(~(x) to show the  
effect of omit t ing the factor cos aa*.  

The variances and  covariances of coordinates are 
themselves subject  to exper imenta l  uncer ta in ty .  There- 
fore when the error is reasonably isotropic i t  m a y  be 
bet ter  (and certainly is simpler) to assume an isotropic 
error by  some average of the various determinat ions,  
t han  to calculate the error by  (1). 

M e t h o d  o f  l e a s t  s q u a r e s  

In  the method of least squares, one derives a ma t r ix  M 
of elements:  

~F  a F  
mij = _~w ~ (10) 

vx~ ~xj 

The inverse of M is M -z with elements niy. If  the  
discrepancies LJ = F o - F ¢  represent  random errors, 
then  the variances and  covariances of coordinates are: 

coy (x~, xy) = n i i _ ~ w / l e / ( u - v )  (11) 

where u - v  is the excess of da ta  over the number  of 
variables.  Sometimes the complete ma t r ix  M is not 
available,  and the var iance is approximated  by  using 
1/m~i in place of n~i in (11). The s tandard  deviat ion 
calculated in this way will be called s(xt). According 
to Sparks (1958), exper imenta l  da ta  suggest t ha t  s(x) 
is less t han  a(x) by  a factor s imilar  to cos aa*.  I t  is 
shown below tha t  this is t rue when the errors are 
isotropic and the only correlation is tha t  among co- 
ordinates of a single a tom because of the incl inat ion of 
the axes. The la t ter  restrict ion permits  M to be fac- 
tored into matrices of order 3 × 3, which can be con- 
side~ed one at a time. 

From (8) and  (11): 

niy = K(b~. by) (12) 
where 

K = p2 (u - v ) / .~  w A  2. (13) 

The inverse of the  ma t r ix  wi th  elements b i .  b~ is the 
mat r ix  with elements a~ "at. Therefore, 

Thus, 
mij -- K-Z(ai • aj) . (14) 

s(x~)/(~(x~) -- (munu)-½ 

= (a~bi) -1 

-- cos a~bi .  (15) 

This result  indicates the impor tance  of dist inguishing 
~(x) and  s(x) in report ing exper imenta l  results. F rom 
(2) and (15), 

p = a s ( x )  , (16) 

and  the correct result  is obtained (to the extent  tha t  
the above assumptions are valid) if cross terms are 
ignored in the mat r ix  M and if the cosine factor in (2) 
is also omitted.  Apparen t ly  this  procedure has  been 
followed by  some workers. For tuna te ly  the effect of 
these factors is small  for angles near  90 ° , however the 
calculation is made.  
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Crystallographic and statistical  independence 

Crystallographic independence does not necessarily 
imply statistical independence of coordinates. The 
values of coordinates and their covariances depend on 
how the origin is defined. On the other hand, inter- 
atomic vectors and their variances should be inde- 
pendent of the choice of origin. As an example, con- 
sider a structure consisting of three atoms in a unit 
cell of no symmetry. If the origin is defined as the 
location of the first atom, then the variance of position 
of that  atom is zero. Assume that  the x coordinates of 
the other two atoms, and the variances of these co- 
ordinates, are determined as well as possible from the 
data. Then, if these coordinates are statistically in- 
dependent, 

a ( x l -  x~) < a(x3- x~). 

This inequality can be reversed by placing the origin 
at the third atom. Therefore, it must be concluded 
that  the coordinates are not statistically independent 
in this case when the origin is chosen in this way. 
If the data are such that  ( x l -  x2), (x8- x2), and ( x l -  x3) 
are equally well determined, then it follows by sub- 

stitution in (1) that  r(x2, x3)= ½ with the origin at the 
first atom. 

Other methods of choice of origin lead to other re- 
sults for the covariances, but I have not made a 
general analysis of the problem. 

I thank Dr R. A. Sparks for his suggestion concern- 
ing s(x). The proofs involving the scalar products 
borrow heavily from an unpublished manuscript by 
Prof. J. Waser, and I thank him for permission to 
use these relations. I also thank Prof. K. N. Trueblood 
for helpful discussions. 
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Untersuchung kolloider Systeme auf Partikelgrbsse und Polydispersit~it 
mit Hilfe der Rbntgenkleinwinkelstreuun~ 
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(Eingegangen am 21. August 1958 und neu eingerichtet 2. Mgirz 1959) 

With the object of testing the theory small angle X-ray scattering (filtered Cu radiation) was ob- 
served on polydisperse systems (Carbon Black, Gold Sol, Polystyrene Latex) of varying grades of 
packing density. Using the method of discussion proposed by I-Iosemann (1939, 1950) the average 
particle radius x and the degree of polydisperseness g were determined for samples of different com- 
paction. Electron microscope pictures of the samples were also taken and discussed statistically. 
Both x and g values checked with the X-ray values to within 6 % in the case of latex and gold, 
whereas carbon black values differed. The effects of non-spherical particle shape, of multiple 
scattering and of in-phase scattering by different particles ('Liquids Maxima') are discussed and 
evaluated in the paper. 

Aus der Rbntgenkleinwinkelstreuung lassen sich Aus- 
sagen sowohl fiber die Grbsse und Gestalt der Bau- 
steine eines inhomogenen Systems als auch fiber die 
Grbssenverteilung und Abstandsverhi~ltnisse in kol- 
loiden Dimensionen machen. Guinier (1939a, b) zeigte, 
dass bei monodispersen Systemen hoher Verdfinnung 
(Gas) die Rbntgenkleinwinkelstreuung die interferenz- 
freie ~berlagerung der Streubilder der einzelnen Par- 
tikel ist. Durch Einffihren einer maxwellartigen Grbs- 
senverteilung der Partikelradien konnte Hosemann 
(1939a, b) aus dem Rbntgenkleinwinkeldiagramm Aus- 

sagen sowohl fiber die Grbsse der Partikel als auch 
fiber ihre Grbssenverteilung gewinnen. 

Geht man zu dichtgepackten Systemen (Flfissig- 
keiten und hochpolymere Festkbrper) fiber, so werden 
die Abstandsverh~ltnisse geordneter und im Streubild 
erscheinen ein oder mehrere sogenannte Flfissigkeits- 
ringe, die Aufschluss fiber einen mittleren Abstand, 
der zwischen benachbarten Bausteinen am h~ufigsten 
vorkommt, geben. W~hrend dieser Einfluss bei mono- 
dispersen Systemen beachtlich wird, zeigte Hosemann 
(1950a, b), dass die Komponente der Flfissigkeits- 


